Agent-based model for the h-index - Exact solution

نویسندگان

  • Barbara Zogala-Siudem
  • Grzegorz Siudem
  • Anna Cena
  • Marek Gagolewski
چکیده

The Hirsch’s h-index is perhaps the most popular citation-based measure of the scientific excellence. In 2013 G. Ionescu and B. Chopard proposed an agent-based model for this index to describe a publications and citations generation process in an abstract scientific community. With such an approach one can simulate a single scientist’s activity, and by extension investigate the whole community of researchers. Even though this approach predicts quite well the h-index from bibliometric data, only a solution based on simulations was given. In this paper, we complete their results with exact, analytic formulas. What is more, due to our exact solution we are able to simplify the Ionescu-Chopard model which allows us to obtain a compact formula for h-index. Moreover, a simulation study designed to compare both, approximated and exact, solutions is included. The last part of this paper presents evaluation of the obtained results on a real-word data set. PACS. XX.XX.XX No PACS code given

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Exact Solution for Classic Coupled Magneto-Thermo-Elasticity in Cylindrical Coordinates

In this paper, the classic coupled Magneto-thermo-elasticity model of hollow and solid cylinders under radial-symmetric loading condition (r, t) is considered. A full analytical and the direct method based on Fourier Hankel series and Laplace transform is used, and an exact unique solution of the classic coupled equations is presented. The thermal and mechanical boundary conditions, the body fo...

متن کامل

An Exact Solution for Classic Coupled Thermoporoelasticity in Axisymmetric Cylinder

In this paper, the classic coupled poro-thermoelasticity model of hollow and solid cylinders under radial symmetric loading condition is considered. A full analytical method is used and an exact unique solution of the classic coupled equations is presented. The thermal and pressure boundary conditions, the body force, the heat source and the injected volume rate per unit volume of a distribute ...

متن کامل

An Exact Solution for Lord-Shulman Generalized Coupled Thermoporoelasticity in Spherical Coordinates

In this paper, the generalized coupled thermoporoelasticity model of hollow and solid spheres under radial symmetric loading condition (r, t) is considered. A full analytical method is used and an exact unique solution of the generalized coupled equations is presented. The thermal, mechanical and pressure boundary conditions, the body force, the heat source and the injected volume rate per unit...

متن کامل

An Exact Solution for Quasi-Static Poro-Thermoelasticity in Spherical Coordin

In this paper the Quasi-Static poro-thermoelasticity model of a hollow and solid sphere under radial symmetric loading condition (r, t) is considered. A full analytical method is used and an exact unique solution of the Quasi-Static equations is presented. The thermal, mechanical and pressure boundary conditions, the body force, the heat source and the injected volume rate per unit volume of a ...

متن کامل

An Exact Solution for Classic Coupled Thermoporoelasticity in Cylindrical Coordinates

In this paper the classic coupled thermoporoelasticity model of hollow and solid cylinders under radial symmetric loading condition (r, t) is considered. A full analytical method is used and an exact unique solution of the classic coupled equations is presented. The thermal and pressure boundary conditions, the body force, the heat source, and the injected volume rate per unit volume of a distr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1509.05798  شماره 

صفحات  -

تاریخ انتشار 2015